Le Cure Girls sponsorizzano una collaborazione tra due importanti università degli Stati Uniti

cg-and-prof-silver02/10/2017 – Le Cure Girls sponsorizzano una collaborazione tra due importanti università degli Stati Uniti

A seguito dei meeting che le Cure Girls hanno avuto a Londra nel settembre 2016 l’Associazione Marina Romoli Onlus  ha deciso di sponsorizzare un progetto di ricerca che vede la collaborazione della Case Western Reserve University (CWRU) e della The Ohio State University (OSU). La sponsorizzazione totale è stata di $50.000 ($25.000 per CWRU e $25.000 per OSU).

Il titolo del progetto è: Promoting functional reorganization in the injured spinal cord using a combinatorial strategy to maximize recovery” – (“Promuovere la riorganizzazione funzionale nel midollo spinale lesionato usando una strategia combinata per massimizzare il recupero”)

Il progetto di ricerca verrà supervisionato dal Prof. Jerry Silver per la CWRU e dal Dr. Andrea Tedeschi per (OSU). dr-andrea-tedeschiQuesto progetto di ricerca se avrà successo potrebbe essere di cruciale importanza per arrivare a sviluppare terapie efficaci per curare sia la lesione spinale acuta che quella cronica. Per maggiori dettagli riportiamo qui sotto un riassunto del progetto di ricerca.

L’Associazione Marina Romoli Onlus ringrazia tutti coloro che l’hanno supportata ed in particolare l’Associazione “RIIM” che ha finanziato metà progetto.

“Per  noi è un onore sponsorizzare una collaborazione fra due prestigiose università americane e cogliamo l’occasione per augurare tanta fortuna al Prof. Silver e al Dr. Tedeschi!”

Marina Romoli – Presidente  MRO

Riassunto del progetto

Problema: Le lesioni al midollo spinale danneggiano le fibre nervose (dette “assoni”) ascendenti e discendenti, ciò causa la perdita di funzioni motorie e sensoriali.

Target: Promuovere la riorganizzazione funzionale nel midollo spinale lesionato utilizzando una strategia combinata per massimizzare il recupero.

Goal: Valutare l’efficacia terapeutica della combinazione di Intracellular Sigma Peptide (ISP) con Pregabalin.

Le lesioni del sistema nervoso centrale (SNC) causano permanenti deficit motori, sensoriali e cognitivi a causa della limitata capacità di riparazione del SNC. Al momento non esistono ancora terapie efficaci per ottenere un recupero funzionale negli individui che hanno avuto un danno al midollo spinale. Tuttavia negli ultimi decenni è stato fatto un considerevole sforzo di ricerca per comprendere i meccanismi cellulari e molecolari che controllano la mancata rigenerazione delle fibre nervose. Numerosi studi hanno dimostrato che la presenza di un ambiente ostile e di uno scarso potenziale rigenerativo intrinseco nella maggior parte dei neuroni del SNC sono responsabili della mancata rigenerazione e della conseguente mancanza di recupero funzionale nei mammiferi adulti. Un’ipotesi intrigante che aiuta a spiegare la mancata rigenerazione specialmente quando la lesione diventa cronica è che le estremità degli assoni tranciati sembrano formare una sorta di legame sinaptico con cellule precursori della  glia nella zona della lesione il che li intrappola indefinitivamente (Filous et al., 2014). Al fine massimizzare il potenziale per una rigenerazione funzionale sarà necessario rilasciare questo “freno” e superare simultaneamente barriere alla rigenerazione intrinseche ed estrinseche. Quindi una singola strategia è improbabile che possa portare ad una completa riparazione del sistema nervoso centrale danneggiato. La disposizione temporale e spaziale dei meccanismi neuronali intrinsechi ed estrinsechi è cruciale per lo sviluppo di strategie aventi lo scopo di  creare condizioni più favorevoli ad ottenere un recupero funzionale.

Attraverso la diminuzione dell’interazione con substrati ricchi di CSPG  (Chondroitin sulfate proteoglycans), una delle maggiori barriere estrinseche alla rigenerazione, l’amministrazione di un peptide membrana-permeabile (Intracellular Sigma Peptide: ISP) che si lega e disattiva “protein tyrosine phosphatase σ (PTPσ)” ha consentito un sostanziale recupero in ratti dopo una lesione contusiva severa del midollo spinale (Lang et al., 2015). L’intenso germogliare di fibre serotonergiche al di sotto della lesione è correlato ad un recupero funzionale in questi animali (Lang et al., 2015). Studi in vitro hanno mostrato che ISP ha un effetto notevole anche sui neuroni sensoriali adulti col risultato di farli  rigenerare attraverso una potente barriera inibitoria di CSPG. Tuttavia l’effetto di ISP sugli assoni sensoriali in vivo deve ancora essere testato. Pregabalin (PGB), un potente gabapentinoide comunemente usato nel trattamento del dolore neuropatico dopo una lesione midollare, si è rivelato efficace nel promuovere una robusta rigenerazione delle fibre sensoriali ascendenti in topi adulti dopo una lesione  midollare  boccando  Alpha2delta2, un ricettore neuronale che è anche un componente critico dell’intrinseco “freno” molecolare della crescita assonale (Tedeschi et al., 2016).  

L’obiettivo di questo studio e di valutare la potenzialmente forte sinergia terapeutica della combinazione di ISP con Pregabalin per massimizzare la riorganizzazione funzionale e strutturale in acuto, ma specialmente in modelli sperimentali di lesione midollare cronica. Se questo studio avrà successo potrebbe avere un impatto significativo nel futuro trattamento clinico per promuovere il recupero neurologico in pazienti con lesione midollare.

Cure Girl Loredana

Cure Girls sponsor a collaboration between two prestigious US universities

cg-and-prof-silver02/10/2017 Cure Girls sponsor a collaboration between two prestigious US universities

As a result of the meetings the Cure Girls had in London in September 2016 The Marina Romoli Onlus Association (MROA) is now sponsoring a new collaborative research project between Case Western Reserve University (CWRU) and The Ohio State University (OSU). The total contribution has been of $50.000 ($25.000 for CWRU and $25.000 for OSU).

The title of the project is:Promoting functional reorganization in the injured spinal cord using a combinatorial strategy to maximize recovery”

The Research will be supervised by Prof. Jerry Silver, principal investigator for CWRU and Dr. Andrea Tedeschi, principal investigator for OSU. dr-andrea-tedeschiThis research project, if successful, will bring us much closer to finding therapies to reverse both acute and Chronic Spinal Cord Injury. For more details about the research project see the abstract below. 

MROA wants to thank all the supporters, in particular the association named “RIIM” that made a contribution to MROA to fund half project.

“It is an honor for MROA to sponsor a collaboration between these two very prestigious US Universities and we wish the best of luck to both Prof. Silver and Dr. Tedeschi!” 
Marina Romoli – President of  MRO

About Marina Romoli Onlus Association:

The Marina Romoli Onlus Association was created in 2011 when the professional cyclist Maria Romoli became paraplegic after she was hit by a car during a training session. The association has the goal to support medical research to find a cure for chronic spinal cord injury and to provide financial support to athletes that become disabled practicing sport activities, in particular to the ones who become paralyzed due to spinal cord injury.                                                                           

Project Abstract                                                                                    

Problem: Injuries to the spinal cord disrupt ascending as well as several descending axonal tracts, ultimately leading to both sensory and motor impairment.                                                                                      

Target: Promoting functional reorganization in the injured spinal cord using a combinatorial strategy to maximize recovery.

Goal: Assessing the therapeutic efficacy of combining intracellular sigma peptide with Pregabalin.

Injuries to the adult mammalian central nervous system (CNS) cause devastating long-term sensory, motor and cognitive disabilities due to limited sprouting and axon regeneration failure. No therapeutic strategy that restores function is currently available for individuals that have suffered damage to their spinal cords. Over the last few decades, a considerable amount of research has been devoted to investigating the cellular and molecular mechanisms controlling axon growth and regeneration failure. A number of studies have demonstrated that the presence of a non- permissive environment and the poor intrinsic growth potential of most CNS neurons accounts for regeneration failure and lack of functional recovery in the adult. One intriguing hypothesis that helps explain regeneration failure especially at chronic time points after injury is that the tips of severed axons (so-called dystrophic endballs) form synaptic-like connections with glial precursor cells within the lesion penumbra which entraps them indefinitely (Filous et al., 2014). We will need to release this ”brake” and overcome other extrinsic and intrinsic barriers simultaneously in order to maximize any potential for functional regeneration. Thus, one single strategy is unlikely to fully repair the damaged CNS. Spatial and temporal arrangement of neuronal extrinsic and intrinsic mechanisms is crucial for the development of strategies aimed at creating more favorable conditions for functional recovery.

By decreasing interaction with CSPG-rich substrates, one of the major extrinsic barriers to regeneration, administration of a membrane-permeable peptide (Intracellular Sigma Peptide: ISP) that binds and inactivates protein tyrosine phosphatase σ (PTPσ) has allowed substantial recovery in rats after severe spinal cord contusion injury (Lang et al., 2015). Extensive sprouting of serotonergic fibers below the site of injury correlated with functional recovery in these animals (Lang et al., 2015). In vitro studies showed that ISP also has a dramatic effect on adult sensory neurons, which resulted in their ability to regenerate past a potently inhibitory CSPG barrier. However, the effect of ISP on sensory axon regeneration in vivo after SCI has not yet been investigated. Pregabalin (PGB), a potent gabapentinoid commonly used to treat neuropathic pain after SCI, has been recently shown to promote robust regeneration of ascending sensory axons in adult mice after SCI by blocking Alpha2delta2, a neuronal receptor and critical component of the intrinsic molecular “brake” of axon growth and regeneration (Tedeschi et al., 2016).

The goal of the proposed study is to assess the potential for strong therapeutic synergy by combining intracellular sigma peptide with Pregabalin to maximize structural and functional reorganization in acute but especially chronic experimental models of SCI. If successful, this study may have significant impact on the design of clinical interventions aimed at promoting neurological recovery in SCI individuals.

Cure Girl Loredana